DOI: 10.25557/2310-0435.2022.03.69-70

Оценка нейропротекторного и иммуномодулирующего эффекта антагониста метаботропных глутаматных рецепторов на модели паркинсонизма

Башкатова В.Г.¹, Алам М.²

- Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт нормальной физиологии имени П.К. Анохина».
 125315, Москва, ул. Балтийская, д. 8
- ² Department of Neuropharmacology, University of Tubingen, Germany

Evaluation of the neuroprotective and immunomodulating effect of a metabotropic glutamate receptor antagonist in a model of parkinsonism

Bashkatova V.G.¹, Alam M.²

- ¹ P.K. Anokhin Institute of Normal Physiology, Baltijskaya Str. 8, Moscow 125315, Russian Federation
- ² Department of Neuropharmacology, University of Tubingen, Germany

Нейродегенеративные заболевания относятся к числу наиболее распространенных и тяжелых заболеваний ЦНС, приводящие к инвалидизации больного и снижению качества жизни не только пациента, но и его семьи. В связи с этим изучение механизмов, а также поиск путей профилактики и лечения нейродегенеративных состояний является важной не только медицинской, но и социальной проблемой. Болезнь Паркинсона (БП) представляет собой прогрессирующее заболевание, связанное с дегенерацией дофаминергических нигростриарных нейронов и нарушением функции базальных ганглиев. Известно, что БП сопровождается, в первую очередь, двигательными нарушениями. Кроме того, когнитивные и психические расстройства являются серьезными немоторными проявлениями БП. Несмотря на многолетние исследования, этиология БП остается до сих пор во многом неясной. Ряд данных указывает на то, что в большинстве случаев заболевание является спорадическим и имеет мультифакторную природу [1]. В последнее время показано, что развитие БП может быть связано с постоянным контактом с пестицидами, в том числе с ингибитором первого митохондриального комплекса ротеноном [2]. На основании этих данных, а также предположения о высокой избирательной чувствительности ниграстриарной системы мозга к ротенону была разработана новая экспериментальная модель БП [2]. На современном этапе значительное внимание уделяется участию глутаматергической нейротрансмиссии в механизмах дофаминергического повреждения головного мозга. В последние годы предполагается, что воздействие на метаботропные глутаматные (mGlu) рецепторы может считаться более перспективным способом изменения активности глутаматергической системы мозга, чем прямое воздействие на ионотропные глутаматные рецепторы [3]. Вместе с тем, физиологические и нейрохимические механизмы эффектов лигандов mGlu рецепторов на развитие паркинсонизма остаются недостаточно изученными.

Целью работы явилось изучение потенциального нейропротекторного и противовоспалительного действия селективного антагониста mGlu рецепторов 5-го подтипа MPEP на модели паркинсонизма, вызванной длительном введением малых доз ротенона.

Материалы и методы. Работа была выполнена на крысах самцах Спрэг-Доэли массой 180-230 г из питомника Университета г. Тюбингена (Германия). Все процедуры этого исследования были проведены в соответствии с требованиями положения Комитета по уходу за животными и их использованию ФБГНУ НИИ нормальной физиологии им. П.К. Анохина (номер разрешения 352), а также в соответствии с Директивой Совета Европейского сообщества от 22 сентября 2010 г. (2010/63/UE). Оценку выраженности каталепсии проводили путем регистрации длительности удержания животным заданного вертикального положения с использованием шкалы Morelli Тестирование каталепсии осуществлялось в течение 1 мин. Ротенон эмульгировали в натуральном рафинированном дезодарированном масле и вводили в дозе 2,5 мг/кг, внутрибющинно (в/б), 1 раз в сутки в течение 28 дней [4]. Контрольная группа животных получала в те же сроки эквивалентное количество дезодорированного подсолнечного мас-

ISSN 2310-0435 **69**

ла. Селективный антагонист mGlu5 рецепторов MPEP [6-метил-2-(фенилэтил)пиридин гидрохлорид] растворяли в физиологическом растворе и вводили в дозе 3 мг/кг, в/б, через сутки в течение 4 недель (всего 14 инъекций). Для определения маркеров воспаления животных декапитировали сразу после проведения теста каталепсии на 28-й день эксперимента, на холоде извлекали мозг и максимально быстро выделяли стриатум. Содержание провоспалительных цитокинов (IL-6, IL-1β, TNF-α) в стриатуме мозга крыс измеряли с использованием наборов ELISA (BioSource International Inc., США). Для статистической обработки результатов использовали алгоритм программы «Statistica-10,0». В связи с отсутствием нормальности, для попарного сравнения вариант применяли U по -критерий Манна-Уитни.

Результаты. Установлено, что многократные инъекции ротенона в дозе 2,5 мг/кг приводили к возникновению выраженной каталепсии. Длительное введение ротенона также сопровождалась увеличением содержания всех исследуемых провоспалительных цитокинов в стриатуме мозга крыс. Введение антагониста mGlu5 рецепторов МРЕР снижало выраженность каталепсии, обусловленной длительным воздействием данного пестицида. МРЕР также в значительной степени предупреждал вызванное ротеноном повышение концентрации исследуемых маркеров воспаления в мозге крыс. Таким образом, в результате данного исследования показано, что введение антагониста mGlu5 рецепторов МРЕР ограничивало выраженность каталепсии и уменьшало активацию провоспалительных факторов в мозге крыс в условиях многократного воздействия ротенона.

Наблюдаемые в наших опытах поведенческие эффекты, обусловленные длительным введением ротенона, согласуются как с нашими более ранними результатами [5], так и с данными других авторов [2]. Полученные данные свидетельствуют о существенном вкладе метаботропных глутаматных рецепторов 5-го подтипа в механизмы развития экспериментального паркинсонизма.

Заключение. Таким образом, суммируя полученные нами результаты и имеющиеся данные литературы можно рассматривать антагонисты метаботропных глутаматных рецепторов 5-ог подтипа как перспективные препараты для лечения нейродегенеративных заболеваний, сопровождающиеся нейроимунными нарушениями.

Список литературы

- Soares N.M., Pereira G.M., Altmann V., de Almeida R.M.M., Rieder C.R.M. Cortisol levels, motor, cognitive and behavioral symptoms in Parkinson's disease: a systematic review. *J. Neural Transm. (Vienna)*. 2019; 126(3): 219–232. DOI: 10.1007/s00702-018-1947-4
- Sherer T.B., Richardson J.R., Testa C.M., Seo B.B., Panov A.V., Yagi T., Matsuno-Yagi A., Miller G.W., Greenamyre JT. Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease. *J. Neurochem.* 2007; 100(6): 1469–1479. DOI: 10.1111/j.1471-4159.2006.04333.x
- Sebastianutto I., Cenci M.A. mGlu receptors in the treatment of Parkinson's disease and L-DOPA-induced dyskinesia. *Curr. Opin. Phar*macol. 2018; 38: 81–89. DOI: 10.1016/j.coph.2018.03.003
- Jayaraj R.L., Beiram R., Azimullah S., Meeran M.F.N., Ojha S.K., Adem A., Jalal F.Y. Lycopodium attenuates loss of dopaminergic neurons by suppressing oxidative stress and neuroinflammation in a rat model of parkinson's disease. *Molecules*. 2019; 24(11): 2182. DOI: 10.3390/molecules24112182
- Bashkatova V. Metabotropic glutamate receptors and nitric oxide in dopaminergic neurotoxicity. World J. Psychiatry. 2021; 11(10): 830– 840. DOI: 10.5498/wjp.v11.i10.830

70 ПАТОГЕНЕЗ. 2022. Т. 20. №3