УДК 616-092

Оценка пролиферативной активности кератоцитов после культивирования совместно с биодеградируемыми конструкциями на основе фиброина шелка

Агаммедов М.Б.¹, Островский Д.С.², Хубецова М.Х.², Агапов И.И.³, Гаврилова Н.А.¹, Борзенок С.А.^{1,2}

- ¹ Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации.
- 127473, Москва, ул. Делегатская, д. 20, стр. 1
- ² Федеральное государственное автономное учреждение «Национальный медицинский исследовательский центр «Межотраслевой научно-технический комплекс «Микрохирургия глаза» имени академика С.Н. Фёдорова» Министерства здравоохранения Российской Федерации.
- 127486, Москва, Бескудниковский бульвар, д. 59А
- ³ Федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Министерства здравоохранения Российской Федерации.

123182, Москва, ул. Щукинская, д. 1

Целью исследования была оценка изменений пролиферативной активности кератоцитов роговицы человека при совместном культивировании с биодеградируемыми конструкциями на основе фиброина шелка, содержащими глиальный нейротрофический фактор.

Материалы и методы. Пролиферативную активность кератоцитов роговицы человека после культивирования с биодеградируемыми конструкциями на основе фиброина шелка изучали в ходе иммуноцитохимического исследования. В качестве клеточного маркёра пролиферации использовался белок Кі-67.

Результаты. На 1-е и 3-и сутки активность белка Кі-67 в культуре кератоцитов была статистически не значима. На 5-е и 9-е сутки наибольшая активность белка Кі-67 в культуре кератоцитов была определена при использовании биодеградируемых конструкций, содержащих глиальный нейротрофический фактор в концентрации 250 нг/мл и 500 нг/мл (р < 0.05).

Заключение. Применение биодеградируемых конструкций на основе фиброина шелка, содержащих глиальный нейротрофический фактор в концентрации 250 и 500 нг/мл, приводит к увеличению пролиферативной активности кератоцитов.

Ключевые слова: глиальный нейротрофический фактор; фиброин шёлка; роговица; кератоциты; пролиферация.

Для цитирования: Агаммедов М.Б., Островский Д.С., Хубецова М.Х., Агапов И.И., Гаврилова Н.А., Борзенок С.А. Оценка пролиферативной активности кератоцитов после культивирования совместно с биодеградируемыми конструкциями на основе фиброина шелка. *Патогенез.* 2023; 21(1): 75-78.

DOI: 10.25557/2310-0435.2023.01.75-78

Для корреспонденции: Островский Дмитрий Сергеевич, e-mail: Dmitriy.Ostrovskiy@gmail.com

Финансирование: Исследование не имеет спонсорской поддержки.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Поступила: 10.11.2022

Evaluation of the proliferative activity of keratocytes after their culturing with silk fibroin scaffolds

Agammedov M.B.¹, Ostrovskiy D.S.², Khubetsova M.K.², Agapov I.I.³, Gavrilova N.A.¹, Borzenok S.A.^{1,2}

- ¹ A.I. Evdokimov Moscow State University of Medicine and Dentistry,
- Delegatskaya St. 20, Bldg. 1, Moscow 127473, Russian Federation
- ² S.N. Fedorov Eye Microsurgery National Medical Research Center, Beskudnikovskij Blvd. 59a, Moscow 127486, Russian Federation
- ³ V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Shchukinskaya St. 1, Moscow 123182, Russian Federation

The aim of the study was to evaluate changes in the proliferative activity of human corneal keratocytes during co-culturing with biodegradable structures based on silk fibroin containing glial neurotrophic factor.

Materials and methods. The proliferative activity of human corneal keratocytes after culturing with biodegradable constructs based on silk fibroin was investigated in an immunocytochemical study. The Ki-67 protein was used as a marker of cell proliferation. **Results.** On the 1st and 3rd days, the activity of Ki-67 protein in the keratocyte culture was not statistically significant. On days 5 and 9, the highest activity of Ki-67 protein in the keratocyte culture was detected with the use of biodegradable constructs containing glial neurotrophic factor at concentrations of 250 ng/ml and 500 ng/ml (p < 0.05).

Conclusion. The use of biodegradable structures based on silk fibroin containing glial neurotrophic factor at concentrations of 250 and 500 ng/ml results in an increase in the proliferative activity of keratocytes.

Key words: *qlial neurotrophic factor; silk fibroin; cornea; keratocytes; proliferation.*

ISSN 2310-0435 **75**

For citation: Agammedov M.B., Ostrovsky D.S., Khubetsova M.K., Agapov I.I., Gavrilova N.A., Borzenok S.A. [Evaluation of the proliferative activity of keratocytes after their culturing with silk fibroin scaffolds]. *Patogenez [Pathogenesis]*. 2023; 21(1): 75-78. (in Russian)

DOI: 10.25557/2310-0435.2023.01.75-78

For correspondence: Ostrovskiy Dmitriy Sergeevich, e-mail: Dmitriy.Ostrovskiy@gmail.com

Funding. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Accepted: 10.11.2022

Современные исследования показали высокую терапевтическую эффективность конструкций на основе фиброина шелка при добавлении в их состав факторов роста [1, 2]. Однако до сих пор остается малоизученной возможность добавления глиального нейротрофического фактора в состав биодеградируемых конструкций на основе фиброина шелка для стимуляции регенерации роговицы. Одной из центральных задач подобного исследования становится изучение взаимодействия клеточных популяций человеческой роговицы с подобными биодеградируемыми конструкциями. В настоящее время в научной литературе не представлены данные о влиянии глиального нейротрофического фактора в составе биодеградируемых конструкций на пролиферативную активность кератоцитов, выделенных из стромы трупных донорских роговиц, что является актуальной проблемой, определившей цель данного исследования.

Цель: оценить изменение пролиферативной активности кератоцитов роговицы человека при совместном культивировании с биодеградируемыми конструкциями на основе фиброина шелка, содержащими глиальный нейротрофический фактор.

Материалы и методы исследования

Пролиферативную активность кератоцитов роговицы человека после культивирования с биодеградируемыми конструкциями на основе фиброина шелка изучали в ходе иммуноцитохимического исследования. В качестве клеточного маркёра пролиферации использовался белок Кі-67, по уровню экспрессии которого судят об активности процесса пролиферации, поскольку данный белок определяется в околоядерном пространстве во всех активных этапах (S, G1, G2, M) клеточного цикла. Присутствие экспрессирующегося Кі-67 позволяет обнаружить клетки в активной фазе клеточного цикла. В работе использовались коммерческие антитела к Ki-67 (Novocastra, Великобритания). Протокол проводимого иммуноцитохимического исследования состоял из стандартных этапов и проводился согласно инструкции фирмы-производителя антител, включая: фиксацию материала, пермобилизацию клеток, окраску первичными антителами, окраску вторично-меченными антителами, контрастирование клеточного ядра, заключение исследуемого препарата под покровное стекло. Исследование производили на инвертированном лазерно-сканирующем конфокальном микроскопе FV10i (Olympus Corp., Япония).

В качестве исследуемого материала использовали кератоциты роговицы человека, выделенные из трупных донорских роговиц Глазного тканевого банка Φ ГАУ «НМИЦ «МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова» Минздрава России. Культивирование кератоцитов проводилось по стандартному культуральному протоколу при t+37°C, 5% CO₂.

Биодеградируемые конструкции представляли собой пленки на основе фиброина шелка, которые были получены из лаборатории бионанотехнологий ФГБУ «НМИЦ ТИО им. ак. В.И. Шумакова» Минздрава России.

Представленные пленки подразделялись в зависимости от концентрации глиального нейротрофического фактора (GDNF) в их составе на: биодеградируемые конструкции на основе фиброина шелка без GDNF; биодеградируемые конструкции с концентрацией глиального нейротрофического фактора, соответственно, 50, 250 и 500 нг/мл.

Затем проводили культивирование кератоцитов с указанными биодеградируемыми конструкциями соответственно созданным блокам: во 2-м, 3-м и 4-м блоках использовали биодеградируемые конструкции на основе фиброина шелка, содержащие GDNF в концентрации 50 нг/мл, 250 нг/мл и 500 нг/мл, соответственно; в 1-м блоке культивирование кератоцитов проводилось без биодеградируемых конструкций и без GDNF (контроль); в 5-м блоке — с биодеградируемыми конструкциями на основе фиброина шелка, без содержания GDNF.

Для оценки полученных данных использовали методы параметрической описательной статистики с определением средней арифметической величины (M) и стандартной ошибки (\pm SE). Статистическую значимость различий между группами оценивали с использованием дисперсионного анализа (ANOVA). Различия сравниваемых показателей принимали достоверными при уровне значимости p < 0.05.

Результаты исследования

Результаты исследования активности белка Ki-67 в клеточной культуре кератоцитов в блоках 1-5 на 1-e, 3-u, 5-e и 9-e сутки представлены в **табл.** 1.

В результате проведенного анализа установлено, что на 1-е и 3-и сутки различий в активности белка Ki-67 в культуре кератоцитов всех исследуемых блоков не обнаружено (p > 0.05).

Показатель активации белка Ki-67 (в %) на 1-е, 3-и, 5-е и 9-е сутки культивирования с биодеградируемыми конструкциями на основе фиброина шелка, содержащими различные концентрации глиального нейротрофического фактора

Блоки	1-е сутки	3-и сутки	5-е сутки	9-е сутки
1 (кератоциты)	21 ± 1,6	$32 \pm 3,2$	$36 \pm 4,2$	$43 \pm 6,3$
2 (50 нг/мл GDNF)	23 ± 1.8	$35 \pm 3,6$	48 ± 5,2	51 ± 5,8
3 (250 нг/мл GDNF)	22 ± 1,9	$37 \pm 3,3$	68±4,6 *	83±6,2 *
4 (500 нг/мл GDNF)	21 ± 1,6	$39 \pm 3,1$	65±4,8 *	86±7,2 *
5 (контроль пленки)	22 ± 1,7	$33 \pm 3,3$	$39 \pm 3,5$	44 ± 6,2

Примечание: * -p < 0.05 по сравнению с контролем (блок 5)

На 5-е сутки активность белка Ki-67 в культуре кератоцитов при использовании биодеградируемых конструкций, содержащих глиальный нейротрофический фактор в концентрации 250 нг/мл и 500 нг/мл была не только достоверно выше контроля (p < 0.05), но и показателей 3-х суток культивирования собственного блока. Активность белка Ki-67 в культуре кератоцитов при использовании биодеградируемых конструкций без глиального нейротрофического фактора не отличалась от контрольных значений.

На 9-е сутки культивирования наиболее высокая активность белка Ki-67 в культуре кератоцитов также наблюдалась в присутствии биодеградируемых конструкций на основе фиброина шелка, содержащих глиальный нейротрофический фактор в концентрации 250 нг/мл и 500 нг/мл (p < 0.05).

Обсуждение

В результате проведенной работы впервые установлено, что применение глиального нейротрофического фактора (в концентрации 250 нг/мл и 500 нг/мл) в биодеградируемых конструкциях приводит к увеличению пролиферативной активности кератоцитов по сравнению контролем (биодеградируемые конструкции без GDNF).

Недавние исследования зарубежных ученых, проведенные *in vivo* на моделях дефекта эпителия у животного, также сообщают, что глиальный нейротрофический фактор был связан с более быстрым заживлением роговицы [3-5].

Вероятно, более низкая пролиферативная активность кератоцитов после их совместного культивирования совместно с биодеградируемыми конструкциями на основе фиброина шелка с глиальным нейротрофическим фактором в концентрации 50 нг/мл и без глиального нейротрофического фактора может быть связана с недостаточной концентрацией GDNF.

Также в течение процесса культивирования, по всей видимости, концентрация глиального нейротрофического фактора постепенно снижается, что также приводит к торможению роста активности пролиферации кератоцитов.

Заключение

Таким образом, применение биодеградируемых конструкций на основе фиброина шелка, содержащих глиальный нейротрофический фактор в концентрации 250 и 500 нг/мл, приводит к увеличению пролиферативной активности кератоцитов по данным иммуноцитохимического исследования при сравнении с биодеградируемыми конструкциями без GDNF.

Список литературы

- 1. Агапова О.И., Агапов И.И. Биодеградируемые изделия на основе фиброина шелка для тканевой инженерии и регенеративной медицины. Москва: Техносфера, 2018. 162 с.
- Li R., Li D.H., Zhang H.Y., Wang J., Li X.K., Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. *Acta Pharmacol. Sin.* 2020; 41(10): 1289–1300. DOI: 10.1038/s41401-019-0338-1
- Chaudhary S., Namavari A., Yco L., Chang J.H., Sonawane S., Khanolkar V., Sarkar J., Jain S. Neurotrophins and nerve regeneration-associated genes are expressed in the cornea after lamellar flap surgery. *Cornea*. 2012; 31(12): 1460–1467. DOI: 10.1097/ICO.0b013e318247b60e
- Di G., Qi X., Zhao X., Zhang S., Danielson P., Zhou Q. Corneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration. *Invest. Ophthalmol Vis. Sci.* 2017; 58(11): 4695–4702. DOI: 10.1167/joys.16-21372
- Kim A., Lakshman N., Karamichos D., Petroll W.M. Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices. *Invest. Ophthalmol. Vis. Sci.* 2010; 51(2): 864–875. DOI: 10.1167/iovs.09-4200

References

- 1. Agapova O.I., Agapov I.I. [Biodegradable products based on silk fibroin for tissue engineering and regenerative medicine]. Moscow: Technosphere, 2018. 162 p. (in Russian)
- Li R., Li D.H., Zhang H.Y., Wang J., Li X.K., Xiao J. Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. *Acta Pharmacol. Sin.* 2020; 41(10): 1289–1300. DOI: 10.1038/s41401-019-0338-1
- Chaudhary S., Namavari A., Yco L., Chang J.H., Sonawane S., Khanolkar V., Sarkar J., Jain S. Neurotrophins and nerve regeneration-associated genes are expressed in the cornea after lamellar flap surgery. *Cornea*. 2012; 31(12): 1460–1467. DOI: 10.1097/ICO.0b013e318247b60e
- Di G., Qi X., Zhao X., Zhang S., Danielson P., Zhou Q. Corneal Epithelium-Derived Neurotrophic Factors Promote Nerve Regeneration. *Invest. Ophthalmol Vis. Sci.* 2017; 58(11): 4695–4702. DOI: 10.1167/iovs.16-21372
- Kim A., Lakshman N., Karamichos D., Petroll W.M. Growth factor regulation of corneal keratocyte differentiation and migration in compressed collagen matrices. *Invest. Ophthalmol. Vis. Sci.* 2010; 51(2): 864–875. DOI: 10.1167/iovs.09-4200

ISSN 2310-0435 77

Сведения об авторах:

Агаммедов Мушвиг Балами оглы — врач-офтальмолог, аспирант кафедры офтальмологии Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации

Островский Дмитрий Сергеевич — кандидат биологических наук, научный сотрудник Центра фундаментальных и прикладных проблем Федерального государственного автономного учреждения «Национальный медицинский исследовательский центр «Межотраслевой научно-технический комплекс «Микрохирургия глаза» имени академика С.Н. Федорова» Министерства здравоохранения Российской Федерации; https://orcid.org/0000-0002-2817-7102

Хубецова Мадина Хетаговна — кандидат медицинских наук, врач-офтальмолог, заведующая Глазным тканевым банком Федерального государственного автономного учреждения «Национальный медицинский исследовательский центр «Межотраслевой научно-технический комплекс «Микрохирургия глаза» имени академика С.Н. Федорова» Министерства здравоохранения Российской Федерации

Агапов Игорь Иванович — доктор биологических наук, профессор, заведующий лабораторией бионанотехнологий Федерального государственного бюджетного учреждения «Национальный медицинский исследовательский центр трансплантологии и искусственных органов имени академика В.И. Шумакова» Министерства здравоохранения Российской Федерации; https://orcid.org/0000-0002-0273-4601

Гаврилова Наталья Александровна — доктор медицинских наук, профессор, заведующая кафедрой глазных болезней Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации; https://orcid.org/0000-0003-0368-296X

Борзенок Сергей Анатольевич — доктор медицинских наук, профессор, академик РАЕН, профессор кафедры глазных болезней Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный медико-стоматологический университет имени А.И. Евдокимова» Министерства здравоохранения Российской Федерации; заведующий Центром фундаментальных и прикладных проблем Федерального государственного автономного учреждения «Национальный медицинский исследовательский центр «Межотраслевой научно-технический комплекс «Микрохирургия глаза» имени академика С.Н. Федорова» Министерства здравоохранения Российской Федерации; https://orcid.org/0000-0001-9160-6240