Нейропротекция при экспериментальном ишемическом инфаркте коры головного мозга

Романова Г.А.

ФГБУ «НИИ общей патологии и патофизиологии» РАМН, 127315, Москва, Балтийская, 8

Исследовано нейропротективное и антиамнестическое действие ГК-2H, димерного дипептидного миметика человеческого фактора роста нервов в сравнении с пептидными лекарственными средствами ноопептом и семаксом, при двусторонней фокальной фотоиндуцированной ишемии префронтальной коры головного мозга крыс. Установлено, что внутрибрюшинное введение ГК-2H в дозе 0,1 мг/кг через 1 или 4 ч и далее во 2-е, 4-е и 8-е сутки после операции приводит на 9-е сутки к уменьшению объема коркового инфаркта на 47% или 65%, а также сохраняет выработанный до моделирования ишемического инсульта условный рефлекс пассивного избегания на 42% или 60% соответственно. Делается вывод о перспективности развития ГК-2H в качестве противоинсультного средства.

Ключевые слова: миметик человеческого фактора роста нервов — ГК-2H, фотоиндуцированный тромбоз, нейропротекция, антиамнестическое действие, ноопепт, семакс

Введение

пидемиологические данные свидетельствуют, что инсульт является ведущей причиной смертности в развитых странах [1]. В фармакотерапии инсульта нейропротекция рассматривается как важнейший этап лечебных мероприятий [3]. Поэтому поиск лекарственных средств, снижающих степень нейродегенерации и улучшающих мнестические функции при ишемии мозга, является актуальной патогенетической проблемой.

Нейропротективным действием обладают многие соединения, имеющие различный механизм действия. Исходя из патогенетических механизмов инсульта и известных данных о процессах сохранения и восстановления жизнеспособности нервной ткани, особое внимание уделяется нейротрофинам и пептидам [6, 7, 9].

Димерный дипептид ГК-2H, создан в НИИ фармакологии им. В.В. Закусова как миметик бета-изгиба 4-й петли человеческого NGF. Он отличается от ранее изученного крысиного аналога ГК-2 [Гудашева, ДАН, 2010] заменой остатка глутаминовой кислоты на глицин.

Для ГК-2 было показано, что он полностью восстанавливает нарушенное фототромбозом УРПИ при введении через час после операции и на 60% уменьшает объем зоны инфаркта у крыс. Синтез и изучение свойств ГК-2Н обусловлены необходимостью получения фармакологического препарата для последующего использования в клинике.

Целью данной работы было изучение нейропротективных и антиамнестических свойств ГК-2Н *in vivo* на экспериментальной модели, воспроизводящей клиническую картину ишемического инфаркта мозга — фотоиндуцированном тромбозе кровеносных сосудов коры головного мозга [4, 10].

Данная модель ранее валидизирована с использованием препаратов, обладающих нейропротективным и антиамнестическим действием, применяемых для фармакологической коррекции патологии мозга [4].

Материалы и методы

Вещества

Пептид гексаметилендиамид бис-(N-моносукцинил-глицил-лизина), ГК-2H, синтезирован в отделе химии НИИ фармакологии им. В.В. Закусова РАМН.

Хлоральгидрат и фотосенсибилизирующий краситель бенгальский розовый были получены из Sigma Chem. Co.

Животные

Опыты выполнены на самцах беспородных крыс массой 180—200 г, которых содержали в виварии при свободном доступе к пище и воде и естественной смене светового режима. При работе с крысами соблюдались требования, сформулированные в Директивах Совета Европейского сообщества 86/609/ЕЕС об использовании животных для экспериментальных исследований.

Дизайн исследования

Все экспериментальные животные были разделены на 4 группы:

- 1) обученные + ложнооперированные;
- 2) обученные + фототромбоз префронтальной коры;
- 3) обученные + фототромбоз коры + ГК-2H, 1 ч после операции;
- 4) обученные + фототромбоз коры + ГК-2H, 4 ч после операции.

Вещество ГК-2H вводили внутрибрющинно в дозе 0,1 мг/кг через 1 ч и другой группе через 4 ч после операции, а затем через 24 ч после 1-го введения, на 4-е сутки и на 8-е сутки после первого введения.

Эксперимент включал в себя следующие этапы: операцию фототромбоза, исследование двигательной активности до и на 9-е сутки после фототромбоза; выработку УРПИ до и проверку сохранения УРПИ на 9-е сутки после фототромбоза; забой животных сразу после проверки сохранения УРПИ, извлечение и фиксацию мозгов; морфологическое исследование и измерение объема очага ишемии.

28 RATOFEHES

Операция (фототромбоз)

Двусторонний фокальный ишемический инфаркт префронтальной коры головного мозга крыс (поля Fr1 и Fr2 согласно атласу Paxinos and Watson, 1986) создавали методом фотоиндуцируемого тромбоза [10]. Животных наркотизировали хлоральгидратом (300 мг/кг, в/б). Фотосенсибилизирующий краситель бенгальский розовый вводили в яремную вену в виде 3% раствора в воде, 40 мг/кг. Голову животных фиксировали в стереотаксисе и после продольного разреза кожи удаляли надкостницу.

Световод с диаметром светового пучка на выходе 3 мм устанавливали на расстоянии 1 мм от поверхности черепа по координатам: 2,0 мм ростральнее брегмы и 2,0 мм латеральнее саггитального шва. Облучение холодным светом (источник — ксеноновая лампа 25 В, 250 Вт) проводили в течение 15 мин с каждой стороны. Ложнооперированные животные подвергались тем же процедурам, за исключением введения бенгальского розового.

Двигательная активность

Для оценки функционального состояния животных исследовали уровень их двигательной активности (ДА) в автоматизированной установке РОДЭО-1, время наблюдения 5 мин. Анализ ДА проводили до и на 9-е сутки после фототромбоза префронтальной коры.

Условный рефлекс пассивного избегания (УРПИ)

Для выработки УРПИ применялась прямоугольная камера размером 45х23х25 см с акриловыми непрозрачными стенками и электрифицированным металлическим полом. Камера разделена стенкой, имеющей квадратное отверстие 6х6 см, на два равных отсека. В первый день обучения крысу помещали в освещенный отсек (лампа мощностью 100 Вт), обследовав который, она через некоторое время (латентный период (ЛП) до обучения) переходила в темный отсек, после чего дверь в этот отсек камеры закрывали и оставляли там крысу на 5 мин. Через 1 ч процедуру повторяли и крысу сразу извлекали из темного отсека. На следующий день ознакомление повторяли, а затем через час проводили процедуру обучения. При заходе крысы в темный отсек камеры дверь в него закрывали и через металлические прутья пола пропускали электрический ток (1,3 мА, 50 Гц, 5 с). Через 24 ч проводили опрос и УРПИ считали выработанным, если ЛП составлял не менее 300 с. Животных с меньшим ЛП исключали из эксперимента. Сохранение УРПИ проверяли на 9-й день после фототромбоза коры. Животное помещали в светлый отсек и фиксировали время перехода в темную камеру.

Антиамнестический (лечебный) эффект вещества рассчитывали по формуле:

$$A(\%) = \frac{100 \cdot \left(\Pi\Pi(_{\phi o m o m p o m f o 3 \ c \ e e u e c m e o m}) - \Pi\Pi(_{\phi o m o m p o m f o 3}) \right)}{\left(\Pi\Pi(_{\rho o m e m p o m f o a 0}) - \Pi\Pi(_{\phi o m o m p o m f o 3}) \right)}.$$

Морфометрия

Для морфометрического измерения площади очага серийного среза и объема ишемического повреждения использовали мозг экспериментальных животных, фиксированный методом погружения в смесь формалин — спирт — уксусная кислота (ФУС) в пропорции 2:7:1 на ночь. После фиксации материал переносили на сутки в 70°-ный спирт и

резали в дистиллированной воде на вибротоме 1000 (Теспіcal Product international inc., USA) с шагом 100 мкм. Каждый второй срез последовательно монтировали на предметных стеклах, покрытых желатином, окрашивали 0,2%-ным водным метиленовым синим. Далее препараты обрабатывали по стандартной гистологической методике: обезвоживали в спирте восходящей концентрации, просветляли в ксилоле и заключали в бальзам. Гистологические препараты сканировали на слайдовой приставке сканера V100 PHOTO (Epson, USA). Этот метод позволяет получить файл с изображением среза мозга нежно-голубого цвета, на котором четко виден очаг ишемического повреждения — темноокрашенный по краю и светлый в середине. Иногда некротическая ткань распадается, в таком случае очагом поражения считали недостающий участок ткани. Для определения площади ишемического повреждения использовали специализированную компьютерную программу Image J («Bethesda», США).

Объем очага повреждения фотоиндуцированным тромбозом определяли по формуле:

$$V = \sum_{n} S_n \times d,$$

гле:

d — толщина пары срезов (200 мкм);

 S_n — измеренная площадь ишемического очага серийного среза (мм²);

 Σ — сумма объемов ишемического повреждения на срезах.

Коэффициент эффективности защиты (КЭЗ) рассчитывали по формуле:

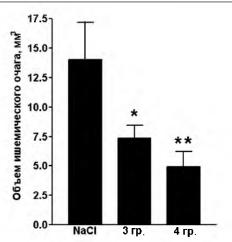
$$K93 = \frac{V_o - V_g}{V_o} \cdot 100\%,$$

где

 V_o — средний суммарный объем очага поражения у животных с введением физраствора;

 $V_{\scriptscriptstyle{\theta}}$ — средний объем очага поражения у животных с введением вещества.

Этот параметр позволяет сравнивать эффективность действия различных веществ на разных моделях ишемии.


Статистический анализ

Статистическую обработку данных проводили с использованием компьютерной программы «Statistica 6.0». Нормальность распределения признака в выборке оценивали по W-критерию Шапиро—Уилка. Для сравнения показателей латентного периода в тесте УРПИ использовали U-критерий Манна—Уитни для независимых выборок и критерий Вилкоксона для парных сравнений для связанных выборок. Статистическую значимость различий объемов инфаркта оценивали по t- критерию Стьюдента.

Результаты и обсуждение

Как и ГК-2, пептид ГК-2Н оказался активен на крысиной модели ишемического инсульта. Изучение двигательной активности контрольных и опытных животных в экспериментах с ГК-2Н показало отсутствие статистически значимых различий как до, так и после фокального коркового инфаркта (данные не приводятся).

Было исследовано влияние введения ГК-2H на сохранение когнитивных функций у крыс после ишемического инсульта. Введение препарата проводили в период «тера-

Влияние ГК-2H, введенного через 1 ч и 4 ч после фототромбоза (3-я и 4-я группы животных) на объем очага ишемического повреждения; * p<0,05; ** p<0,01 по сравнению с группой, получавшей NaCl 0,9% (физраствор)

певтического окна», т.е. патогенетическая терапия экспериментального острого инсульта была направлена на прерывание быстрых реакций глутамат-кальциевого каскада и уменьшение размеров очага ишемии.

У всех взятых в эксперимент животных до операции был выработан условный рефлекс пассивного избегания

до латентности захода в темный отсек (ЛП) 300 с. После фототромбоза латентный период захода животных в темный отсек уменьшился до 48 с. У 3-й группы крыс, получавших внутрибрюшинно ГК-2Н через 1 ч после операции ЛП сократился до 154 с, а у 4-й группы, получившей ГК-2Н через 4 ч после фототромбоза — до 198 с (табл. 1). Увеличение антиамнестического эффекта при более позднем введении дипептида может быть связано с уменьшением количества эндогенного NGF в это время по сравнению с количеством этого нейротрофина, выбрасываемого сразу после инсульта. На фоне низкой концентрации NGF влияние ГК-2Н может быть более заметно.

Таким образом, полученные данные свидетельствуют о выраженном антиамнестическом эффекте препарата ГК-2Н в условиях локальной ишемии мозга, который проявился в значительном сохранении УРПИ, выработанного до фото-индуцированного тромбоза префронтальной коры.

Морфометрическое исследование показало (рис. 1), что общий объем поражения мозга крысы при фотоиндуцированном тромбозе составил в среднем 14 мм³, что составляет примерно 1% от объема мозга. У леченых животных этот объем снизился до 7,5 мм³ при введении ГК-2Н через 1 ч и до 5 мм³ при введении через 4 ч. Рассчитанный коэффициент эффективности защиты составил соответственно 47% при введении ГК-2Н через 1 ч и 65% при введении через 4 ч после ишемического повреждения ко-

Таблица 1
Антиамнестическое действие ГК-2Н (0,1 мг/кг)
при субхроническом внутрибрюшинном введении в условиях ишемического инфаркта мозга.
Латентный период в тесте УРПИ на 9-е сутки после фототромбоза префронтальной коры (с)

Ложнооперированные	Фототромбоз + физ. р-р	Фототромбоз + ГК-2Н через 1 ч п/о	Фототромбоз + ГК-2Н через 4 ч п/о			
(1 гр.)	(контроль, 2 гр.)	(3 гр.)	(4 гр.)			
300	20	300	300			
300	30	15	87			
300	103	90	20			
300	38	60	70			
300	105	300	300			
300	20	300	300			
300	18	15	300			
300	Сред. 48#	Сред. 154*, лечебный эффект 42%	Сред.=197*, лечебный эффект 60%			
n=8	n=7	n=7	n=7			

Примечание. n- число животных в группе; * p<0,05 — достоверное отличие 3-й и 4-й групп от оперированного контроля; * p<0,05 — достоверное отличие оперированного контроля от ложнооперированных

Таблица 2
Антиамнестическое действие ГК-2H, Ноопепта [8] и Семакса [5] на модели фотохимического инсульта

Экспериментальные группы животных	ГК-2Н, 1 ч п/о, 0,1 мг/кг в/б, m=4	ГК-2Н, 4 ч п/о, 0,1 мг/кг в/б, m=4	Ноопепт, 1 ч п/о, 0,5 мг/кг в/б, m=9	Семакс, 1 ч п/о, 0,25 мг/кг и/н, m=7
ЛП ложнооперированных животных, с	300	300	300	300
ЛП контрольных животных с фототромбозом, с	48#	48#	80#	80#
ЛП опытных животных с фототромбозом и веществом, с	154*	198*	200*	240*
Эффективность лечения, А (%)	42	60	55	73

Примечание. $\pi/o-\pi$ после операции; $\pi/o-\pi$ внутрибрюшинно; $\pi/o-\pi$ интраназально; $\pi/o-\pi$ число введений препарата.

Эффективность лечения рассчитывалась по формуле: $A(\%) = \frac{100 \cdot \left(\Pi\Pi(_{\phi \sigma \tau \sigma T p o M 603} \, C \, B e U e C T B O M \right) - \Pi\Pi(_{\phi \sigma \tau \sigma T p o M 603}) \right)}{\left(\Pi\Pi(_{\Omega \sigma M + O \sigma T P o M 603}) - \Pi\Pi(_{\phi \sigma \tau \sigma T p o M 603}) \right)};$

 * p<0,05 — достоверное отличие от оперированного контроля; * p<0,05 — достоверное отличие оперированного контроля от ложнооперированных

30 NATOFEHE3

Нейропротективное действие ГК-2, Ноопепта [8] и Семакса [5] на модели фотохимического инсульта

ГК-2Н, 0,1 мг	Семакс, 0,25 мг/кг и/н,	
1 ч п/о	4 ч п/о	m=7, 1 ч п/о
14	14	15
7,5*	5,0*	11*
47	65	27
_	1 ч п/о 14	14 14 7,5* 5,0*

Эффективность лечения рассчитывалась по формуле: $E(\%) = \frac{100 \cdot (V_E - V_O)}{V_O}$;

* p<0,05 — достоверное отличие от оперированного контроля

ры. Как и в предыдущем случае, более сильный лечебный эффект наблюдается при более позднем первом введении ГК-2H. Вместе с тем, отмечена хорошая корреляция между объемом поражения мозга и нарушением памяти.

При сравнении эффектов ГК-2H с влиянием используемых в клинике ноотропов Ноопепта (8) и Семакса [5] видно, что на данной модели ГК- 2H обладает сходным антиамнестическим действием по сравнению с обоими препаратами, но проявляемым в меньших дозах (табл. 2).

При сравнении нейропротективного действия ГК-2H с Семаксом, используемым в клинике для лечения инсультов, видно, что эффективность лечения ГК-2H примерно в 2 раза выше, чем у Семакса (табл. 3).

Увеличение эффективности действия ГК-2H как на память, так и на объем очага поражения при отсроченном введении вещества может быть важно в клинической практике.

Полученные результаты подтверждают установленные в опытах *in vitro* [6] нейропротективные свойства ГК-2Н и свидетельствуют о перспективности дальнейшей разработки препарата в качестве потенциального противоинсультного средства.

Список литературы

- 1. Болезни нервной системы. Руководство для врачей в 2-х т. / Под ред. Яхно Н.Н., Штульмана Д.Р. 3-е изд-е перераб. и доп. М.: Медицина, 2003. Т. 1.
- 2. Гусев Е.И., Скворцова В.И., Мясоедов Н.Ф. и др. // Журнал неврологии и психиатрии. 1997. №6. С. 26—34.
- 3. Инсульт: диагностика, лечение, профилактика / Под ред. 3.А. Суслиной, М.А. Пирадова. — М.: Медпресс-Информ, 2008. — 288 с.
- 4. Романова Г.А. Дизрегуляционное нарушение интегративной деятельности мозга при фокальной ишемии коры // Дизрегуляционная патология: Руководство для врачей и биологов / Под ред. Г.Н. Крыжановского. М.: Медицина, 2002. С. 605—615.
- 5. Романова Г.А., Силачев Д.Н., Шакова Ф.М. и др. // Бюлл. Экспер. биол. 2006. Т. 142, №12. С. 618—621.
- 6. Середенин С.Б., Гудашева Т.А. Патент РФ 2410392, Бюл. №3 от 27.01.2011.
- 7. Connor B., Dragunow M. // Brain. Res. Brain Res. Rev. 1998. Vol. 27. P. 1—39.
- 8. Ostrovskaya R.U. Romanova G.A., Barskov L.V. et al. // Behav. Pharmacol. 1999. Vol. 10, №5. P. 549—553.
- 9. Pollack S.J., Harper S.J. // Drug News and Perspectives. 2002. Vol. 15, No5. P. 268—277.
- 10. Watson B.D., Dietrich W.D., Busto R. et al. // Ann. Neurol. 1985. Vol. 17, №5. P. 497—504.

Neuroprotection on experimental ischemic insult of prefrontal areas of the brain cortex

Romanova G.A.

It was shown neuroprotective and antiamnestic action of GK-2H with comparison to peptides noopept and semax on model bilateral focal ischemical injury of prefrontal areas of the rat brain cortex. It is stated that intraperitoneal injection of GK-2H in dose 0,1 mg/kg on 1 or 4 hours and further on 2-nd, 4-th and 8-th days after operation leads to decrease of volume of cortical infarction to 47% or 65% and restoration of reproduction of passive avoidance reflex aquired before experimental ischemic insult on 42% and 60% accordingly. It was concluded that GK-2H possesses neuroprotective properties.

Key words: nerve growth factor mimetic — GK-2H, phototrombosis, neuroprotection, antiamnestic action, noopept, semax

Nº2-2012 31