УДК 616-092

Определение регуляторного потенциала полиморфизмов, ассоциированных с преэклампсией

Карпова Н.С., Дмитренко О.П., Нурбеков М.К.

Федеральное государственное бюджетное научное учреждение «Научно-исследовательский институт общей патологии и патофизиологии».

125315, Москва, ул. Балтийская, д. 8

Целью исследования было выявление полиморфизмов с наибольшим регуляторным потенциалом, которые могут стать перспективными маркерами раннего прогноза развития преэклампсии.

Материалы и методы. Для выбора полиморфизмов с наибольшим регуляторным потенциалом использовались биоинформатические базы данных: GWAS-cataloa, dbSNP, RegulomDB, UCSC.

Результаты. Мы оценили регуляторный потенциал 36 полиморфизмов, ассоциированных с преэклампсией, и выявили 7 наиболее перспективных полиморфизмов для дальнейшего изучения (rs1918975, rs1458038, rs10774624, rs7318880, rs1421085, rs259983 и rs4769612).

Ключевые слова: полиморфизмы; преэклампсия; патологии беременности

Для цитирования: Карпова Н.С., Дмитренко О.П., Нурбеков М.К. Определение регуляторного потенциала полиморфизмов, ассоциированных с преэклампсией. *Патогенез.* 2023; 21(3): 50-53.

DOI: 10.25557/2310-0435.2023.03.50-53

Для корреспонденции: Kapпoвa Haталия Сергеевна, e-mail: nataliiakarpova.sp@gmail.com

Финансирование: Работа выполнена в рамках государственного задания Федерального государственного бюджетного учреждения «Научно-исследовательский институт патологии и патофизиологии» № ФГБУ-2022-0011: «Выявление значимых биоиндикаторов различных нарушений функций организма».

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Поступила: 31.05.2023

Determination of the regulatory potential of polymorphisms associated with preeclampsia

Karpova N.S., Dmitrenko O.P., Nurbekov M.K.

Institute of General Pathology and Pathophysiology, Baltijskaya Str. 8, Moscow 125315, Russian Federation

The **aim** of the study was to identify polymorphisms with the highest regulatory potential, which can become promising early predictors of preeclampsia.

Materials and methods. To select polymorphisms with the highest regulatory potential, bioinformatic databases were used: GWAS-catalog, dbSNP, RegulomDB, UCSC.

Results. We assessed the regulatory potential of 36 polymorphisms associated with preeclampsia and identified the 7 most promising polymorphisms for further study (rs1918975, rs1458038, rs10774624, rs7318880, rs1421085, rs259983 and rs4769612).

Key words: polymorphisms; preeclampsia; pregnancy pathologies

For citation: Karpova N.S., Dmitrenko O.P., Nurbekov M.K. [Determination of the regulatory potential of polymorphisms associated with preeclampsia]. *Patogenez [Pathogenesis]*. 2023; 21(3): 50-53. (in Russian)

DOI: 10.25557/2310-0435.2023.03.50-53

For correspondence: Karpova Nataliia Sergeevna, e-mail: nataliiakarpova.sp@gmail.com

Funding. The research was carried out within the framework of the state task of the Federal State Budgetary Institution "Research Institute of Pathology and Pathophysiology" № FGFU-2022-0011: "Identification of significant bioindicators of various disorders of body functions".

Conflict of interest. The authors declare no conflict of interest.

Received: 31.05.2023

Введение

Гипертензивные расстройства (ГР) во время беременности являются второй по распространенности причиной материнской смертности во всем мире, приводя к 62 000—77 000 смертей ежегодно [1]. Среди них особое место занимает преэклампсия. Согласно клиническим рекомендациям «Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде» 2021 года, преэклампсия— это

осложнение беременности, родов и послеродового периода, характеризующееся повышением после 20-й недели беременности систолического артериального давления ≥140 мм рт.ст. и/или диастолического давления ≥90 мм рт.ст, независимо от уровня артериального давления в анамнезе, в сочетании с протеинурией или хотя бы одним другим параметром, свидетельствующим о присоединении полиорганной недостаточности [2].

 Наследуемость преэклампсии может достигать 55%, и наличие в анамнезе этого расстройства у матери или сестры является серьезным фактором риска для развития патологии [3, 4]. Подтверждением ключевой роли генетических факторов стало исследование, продемонстрировавшее повышение риска развития преэклампсии у матери при трисомии 13 хромосомы у плода, а также некоторые другие ассоциативные исследования, включая GWAS [5, 6].

Целью настоящего исследования стал выбор полиморфизмов с наибольшим регуляторным потенциалом, которые могут стать перспективными маркерами раннего прогноза развития преэклампсии.

Материалы и методы исследования

Поиск полиморфизмов и генов-кандидатов, ассоциированных с преэклампсией

Для поиска полиморфизмов, ассоциированных с преэклампсией, использовали GWAS-catalog [5]. Распространенность аллелей полиморфизмов проводили согласно «dbSNP: a database of single nucleotide

polymorphisms». Для дальнейшего анализа выбрали полиморфизмы с p-value ниже 1×10^{-8} для исключения из исследования редких генетических вариантов (Minor allele frequency (MAF) <10 %) [7].

Анализ регуляторного потенциала полиморфизмов, ассоциированных с преэклампсией

Регуляторный потенциал полиморфизмов, ассоциированных с преэклампсией, с p-value ниже 1×10^{-8} определяли с помощью базы данных RegulomDB, а перекрывания полиморфизмов с регуляторными областями — согласно геномному браузеру UCSC, включающий базы данных регуляторных элементов генома ENCODE, JASPAR 2022, ORegAnno [8, 9].

Результаты исследования и обсуждение

В результате проведённого анализа в GWAS-catalog установлено, что с развитием преэклампсии ассоциировано 36 полиморфизмов (табл. 1), из которых 4 ассоциированы с преэклампсией при анализе генома плода [5].

Так, 9 из 36 полиморфизмов ассоциированы с преэклампсией только в афро-карибской популяции, что

Таблица 1. Полиморфизмы, ассоциированные с преэклампсией, согласно GWAS-catalog.

Полиморфизм (SNP)	Ген	Координаты*	Популяция	p-value	Аллель риска	MAF	
Полиморфизмы генов матери							
rs11617740	FGF14	chr13:102027776	Афро-Карибская	7×10^{-7}	-	0,083002	
rs2839440	ZNF295-AS1	chr21:42023389	Афро-Карибская	1×10^{-6}	-	0,154065	
rs12641856	LINC02500, TEMN3-AS1	chr4:181688712	Афро-Карибская	2×10^{-6}	-	0,06465	
rs4815879	MCM8	chr20:5968888	Афро-Карибская	2×10^{-6}	-	0,087764	
rs28360974	MUC22, MUC21	chr6:31008442	Афро-Карибская	3×10^{-6}	-	0,03580	
rs1248993	LINC01517, BAMBI	chr10:28738294	Афро-Карибская	6 × 10 ⁻⁶	-	0,104997	
rs975369		chr7:25573041	Афро-Карибская	8 × 10 ⁻⁶	-	0,104997	
rs1556832	ADRA1D	chr20:4234910	Афро-Карибская	9 × 10 ⁻⁶	-	0,50142	
rs11600901	SCN2B, SCN4B	chr11:118161271	Афро-Карибская	9 × 10 ⁻⁶	-	0,05268	
rs7322722	MYCBP2	chr13:77305241	Европейская	1×10^{-6}	-	0,17875	
rs10989019	INVS	chr9:100214259	Европейская	2×10^{-6}	-	0,12423	
rs10883969	SFR1	chr10:104124358	Европейская	3×10^{-6}	-	0,40414	
rs7028939	ERP44	chr9:100046403	Европейская	3×10^{-6}	-	0,12114	
rs17787940	WWTR1	chr3:149532802	Европейская	3×10^{-6}	-	0,09007	
rs9976946	RUNX1	chr21:34835765	Европейская	5 × 10 ⁻⁶	-	0,97516	
rs6563695	LHFPL6	chr13:39329106	Европейская	5×10^{-6}	-	0,08578	
rs17412740	LZTS1	chr8:20389247	Испанская	2×10^{-6}	-	0,066440	
rs17636747	TGFBRAP1, GPR45	chr2:105261413	Испанская	4×10^{-6}	-	0,02502	
rs5960	F10	chr13:113147423		5 × 10 ⁻⁶	-	0,840664	
rs34360485	LINC02482	chr4:6669841		6 × 10 ⁻⁶	-	0,16458	
rs4655789	WLS	chr1:68228568		8 × 10 ⁻⁶	G	0,07231	

Продолжение табл. 1 см. на стр. 53.

ISSN 2310-0435 51

Полиморфизм (SNP)	Ген	Координаты*	Популяция	p-value	Аллель риска	MAF
rs708119	WNT3A	chr1:228015567		4 × 10 ⁻⁷	С	0,30577
rs1918975	MECOM-AS1, MECOM	chr3:169462088		1×10^{-8}	T	0,635203
rs35630707		chr4:59999871		7×10^{-6}	С	0,9594
rs1458038	PRDM8, FGF5	chr4:80243569		1×10^{-8}	T	0,280870
rs140479110	LINC02119	chr5:38050783		2 × 10 ⁻⁷	GGA	0,33494
rs9263761	CCHCR1	chr6:31148962		2×10^{-6}	G	0,81396
rs10774624	LINC02356	chr12:111395984		2×10^{-8}	G	0,60549
rs7318880	EIF4A1P7, FLT1	chr13:28564148		8 × 10 ⁻⁸	T	0,50888
rs1421085	FTO	chr16:53767042		1×10^{-9}	С	0,391113
rs181793400	PIGN	chr18:61921970		6 × 10 ⁻⁶	Т	0,00240
rs259983	ZNF831	chr20:59160402		3×10^{-10}	С	0,25113
Полиморфизмы генов ребенка						
rs4769612	FLT1, EIF4A1P7	chr13:28564361		4×10^{-14}	С	0,45778
rs11614652	ITPR2	chr12:26805069		2×10^{-7}	G	0,11463
rs5866671	CDH10	chr5:24557204		2×10^{-7}	T	0,75207
rs75293382	C2orf83	chr2:227645620		1×10^{-6}	С	0,03452

Примечания: * — согласно сборке генома человека GRCh38.p13.

Таблица 2. Регуляторный потенциал и перекрывание с регуляторными областями полиморфизмов, ассоциированных с преэклампсией

Расположение на хромосоме	Полиморфизм	Регуляторный потенциал*	Перекрывание полиморфизмов с регуляторными областями генома человека
chr16:53767042	rs1421085	0,97	ЕН38Е1816432** ССТФ***
chr12:111395984	rs10774624	0,84	ССТФ
chr3:169462088	rs1918975	0,81932	ССТФ
chr4:80243569	rs1458038	0,07	ССТФ
chr13:28564148	rs7318880	0,70497	OREG1191996**** OREG1658246 ССТФ
chr13:28564361	rs4769612	0,60906	OREG1191996 OREG1658246 OREG1688336 OREG1537828
chr20:59160402	rs259983	0,60906	EH38E2126047

Примечание: * — регуляторный потенциал (probability score, оценка вероятности) автоматически рассчитывается RegulomDB: чем ближе показатель к 1, тем выше регуляторный потенциал полиморфизма; ** — регуляторный участок генома, согласно базе данных ENCODE; *** — сайты связывания транскрипционных факторов (ССТФ), согласно базе данных JASPAR 2022; **** — регуляторные области и ССТФ, согласно базе данных ORegAnno.

может быть связано с различной распространенностью аллелей этих полиморфизмов в некоторых этнических группах. Это согласуется с тем, что заболевание особенно часто встречается у женщин, принадлежащих к коренным народам Африки к югу от Сахары или имеющих происхождение из них [10]. Также 7 полиморфизмов были ассоциированы только для европейской популяции (rs7322722, rs10989019, rs10883969, rs7028939, rs17787940, rs9976946 и rs6563695) и 2 для испанской популяции (rs17412740, rs17636747). Остальные 18 полиморфизмов показали статистически значимую ассо-

циацию без привязки к какой-либо отдельной этнической группе.

Для последующего анализа нами были выбраны только полиморфизмы с p-value ниже 1×10^{-8} : rs1918975, rs1458038, rs10774624, rs7318880, rs1421085, rs259983 и rs4769612. С помощью Regulom DB и геномного браузера UCSC для них были определены регуляторный потенциал и перекрывание с регуляторными областями (табл. 2). Полученные данные свидетельствуют о том, что все выбранные полиморфизмы обладают регуляторным потенциалом с разной степенью изученности.

Заключение

Полиморфизмы rs1918975, rs1458038, rs10774624, rs7318880, rs1421085, rs259983 и rs4769612 обладают регуляторным потенциалом и перекрываются с регуляторными областями генома, что делает их перспективными маркерами риска развития преэклампсии на ранних сроках беременности.

Список литературы

- Khan K.S., Wojdyla D., Say L., Gülmezoglu A.M., Van Look P.F. WHO analysis of causes of maternal death: a systematic review. *Lancet*. 2006; 367(9516): 1066–1074. DOI:10.1016/S0140-6736(06)68397-9
- Преэклампсия. Эклампсия. Отеки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Клинические рекоменлации. Москва. 2021. 79 с.
- Lie R.T., Rasmussen S., Brunborg H., Gjessing H.K., Lie-Nielsen E., Irgens L.M. Fetal and maternal contributions to risk of pre-eclampsia: population based study. *BMJ*. 1998; 316(7141): 1343–1347. DOI:10.1136/bmj.316.7141.1343
- Chesley L.C., Cosgrove R.A., Annitto J.E. Pregnancies in the sisters and daughters of eclamptic women. *Obstet. Gynecol.* 1962; 20: 39–46. DOI: 10.1097/00006250-196207000-00004
- Sollis E., Mosaku A., Abid A., Buniello A., Cerezo M., Gil L., Groza T., Güneş O., Hall P., Hayhurst J., Ibrahim A., Ji Y., John S., Lewis E., MacArthur J.A.L., McMahon A., Osumi-Sutherland D., Panoutsopoulou K., Pendlington Z., Ramachandran S., Stefancsik R., Stewart J., Whetzel P., Wilson R., Hindorff L., Cunningham F., Lambert S.A., Inouye M., Parkinson H., Harris L.W. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. *Nucleic Acids Res.* 2023; 51(D1): D977–D985. DOI: 10.1093/nar/gkac1010
- Tuohy J.F., James D.K. Pre-eclampsia and trisomy 13. Br J Obstet Gynaecol. 1992; 99(11): 891–894. DOI: 10.1111/j.1471-0528.1992.tb14436.x
- Fadista J., Manning A.K., Florez J.C., Groop L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. *Eur. J. Hum. Genet.* 2016; 24(8): 1202–1205. DOI: 10.1038/ejhg.2015.269
- Boyle A.P., Hong E.L., Hariharan M., Cheng Y., Schaub M.A., Kasowski M., Karczewski K.J., Park J., Hitz B.C., Weng S., Cherry J.M., Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. *Genome Res.* 2012; 22(9): 1790–1797. DOI: 10.1101/gr.137323.112
- Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002; 12(6): 996–1006. DOI:10.1101/gr.229102

 Abalos E., Cuesta C., Grosso A.L., Chou D., Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. *Eur. J. Obstet. Gynecol. Reprod. Biol.* 2013; 170(1): 1–7. DOI: 10.1016/j.ejogrb.2013.05.005

References

- Khan K.S., Wojdyla D., Say L., Gülmezoglu A.M., Van Look P.F. WHO analysis of causes of maternal death: a systematic review. *Lancet*. 2006; 367(9516): 1066–1074. DOI:10.1016/S0140-6736(06)68397-9
- [Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period]. Clinical recommendations. Moscow, 2021. 79 p. (in Russian)
- 3. Lie R.T., Rasmussen S., Brunborg H., Gjessing H.K., Lie-Nielsen E., Irgens L.M. Fetal and maternal contributions to risk of pre-eclampsia: population based study. *BMJ*. 1998; 316(7141): 1343–1347. DOI:10.1136/bmj.316.7141.1343
- Chesley L.C., Cosgrove R.A., Annitto J.E. Pregnancies in the sisters and daughters of eclamptic women. *Obstet. Gynecol.* 1962; 20: 39–46. DOI: 10.1097/00006250-196207000-00004
- Sollis E., Mosaku A., Abid A., Buniello A., Cerezo M., Gil L., Groza T., Güneş O., Hall P., Hayhurst J., Ibrahim A., Ji Y., John S., Lewis E., MacArthur J.A.L., McMahon A., Osumi-Sutherland D., Panoutsopoulou K., Pendlington Z., Ramachandran S., Stefancsik R., Stewart J., Whetzel P., Wilson R., Hindorff L., Cunningham F., Lambert S.A., Inouye M., Parkinson H., Harris L.W. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource. *Nucleic Acids Res.* 2023; 51(D1): D977–D985. DOI: 10.1093/nar/gkac1010
- Tuohy J.F., James D.K. Pre-eclampsia and trisomy 13. Br J Obstet Gynaecol. 1992; 99(11): 891–894. DOI: 10.1111/j.1471-0528.1992. tb14436.x
- Fadista J., Manning A.K., Florez J.C., Groop L. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. *Eur. J. Hum. Genet.* 2016; 24(8): 1202–1205. DOI: 10.1038/ ejhg.2015.269
- 8. Boyle A.P., Hong E.L., Hariharan M., Cheng Y., Schaub M.A., Kasowski M., Karczewski K.J., Park J., Hitz B.C., Weng S., Cherry J.M., Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. *Genome Res.* 2012; 22(9): 1790–1797. DOI: 10.1101/gr.137323.112
- Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. The human genome browser at UCSC. Genome Res. 2002; 12(6): 996–1006. DOI:10.1101/gr.229102
- Abalos E., Cuesta C., Grosso A.L., Chou D., Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. *Eur. J. Obstet. Gynecol. Reprod. Biol.* 2013; 170(1): 1–7. DOI: 10.1016/j.ejogrb.2013.05.005

Сведения об авторах:

Карпова Наталия Сергеевна — аспирант, младший научный сотрудник лаборатории регуляции репаративных процессов Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт общей патологии и патофизиологии»; https://orcid.org/0000-0001-6391-4908

Дмитренко Ольга Павловна — младший научный сотрудник лаборатории регуляции репаративных процессов Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт общей патологии и патофизиологии»; https://orcid.org/0000-0002-2067-0971

Нурбеков Малик Кубанычбекович — ведущий научный сотрудник лаборатории регуляции репаративных процессов Федерального государственного бюджетного научного учреждения «Научно-исследовательский институт общей патологии и патофизиологии»; https://orcid.org/0000-0002-9383-8026

ISSN 2310-0435 53