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Актуальность. В зависимости от своего микроокружения макрофаги могут радикально менять свой фе-
нотип, каждый раз исполняя «полярные» функции. Например, на первых этапах развития воспаления 
они могут иметь провоспалительный M1 фенотип, в конце – антивоспалительный M2. При той или иной 
патологии адекватное программирование макрофагов может обеспечить выздоровление, а неадекват-
ное – напротив, прогрессирование болезни. Поэтому возник колоссальный интерес к факторам, которые 
влияют на фенотип макрофагов. В ходе экспериментов было замечено, что изолированно-сидящие ма-
крофаги как правило имели М2 фенотип, тогда как сгруппированные в кластеры макрофаги, контактиру-
ющие друг с другом – М1 фенотип. Это навело на мысль, что контактирование макрофагов друг с другом 
может влиять на их фенотип. Открытие феномена контактного модулирования фенотипа макрофагов 
сразу поставило вопрос о его биологической значимости, по данным литературы этот феномен может 
быть вовлечен в ряд важных физиологических и патофизиологических процессов.
Цель работы состояла в проверке гипотезы, что контактирование макрофагов друг с другом может вли-
ять на фенотип макрофагов. 
Методы. В работе использовали макрофаги мышей, выделенные из перитонеального смыва. Взвесь ма-
крофагов в среде RPMI-1640 с 100 U/мл пенициллина и 100 µг/мл стрептомицина размещали в плоско-
донные лунки 48-луночных планшетов в трёх вариантах плотности: 1) стандартно по 0,5 млн клеток в 0,5 
мл среды, 2) с меньшей плотностью – по 0,25 млн клеток в 0,25 мл среды, и 3) с большей плотностью – по 
1,0 млн клеток в 1,0 мл среды, так что соотношение макрофагов к объёму среды не менялось, а плотность 
посадки на дне лунки различалась. Через 36 часов с помощью светового микроскопа в лунках анализиро-
вали какой фенотип имеют макрофаги в кластерах, и какой изолированно сидящие макрофаги. 
Результаты. 1) Объединение макрофагов в кластеры способствует формированию структурного М1 фе-
нотипа, а изолированное расселение макрофагов – М2 фенотипа. 2) Снижение плотности расселения ма-
крофагов способствует формированию М2, а увеличение – М1 фенотипа.
Заключение. Продолжение исследований механизмов контактного модулирования фенотипа макрофа-
гов открывает новое направление в изучении врожденного иммунитета: сигнальные взаимоотношения 
между молекулами адгезии, структурой цитоскелета и внутриклеточными механизмами поддержания 
процесса воспаления. Кроме того, феномен контактного контроля фенотипа макрофагов, вероятно, по-
зволит лучше понимать иммунные патогенетические механизмы развития патологий. И наконец, в пер-
спективе, механизмы контактного модулирования фенотипа иммунных макрофагов могут стать тера-
певтической мишенью для коррекции нарушенного иммунного ответа при разных патологиях.
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Relevance. Depending on their microenvironment, macrophages can radically change their phenotype, each time 
performing “polar” functions. For example, at the beginning of inflammation, they can have a proinflammatory 
M1 phenotype, and at the end - an antiinflammatory M2. In this or that pathology, adequate programming of 
macrophages can ensure recovery, and inadequate – on the contrary, progression of the disease. Therefore, 
a colossal interest arose in the factors that affect the phenotype of macrophages. During the experiments, it 
was noted that isolated-sitting macrophages usually had the M2 phenotype, while macrophages grouped in 
clusters, contacting each other - the M1 phenotype. This led to the idea that contact between macrophages 
can affect the phenotype of macrophages. The discovery of the phenomenon of contact modulation of the 
phenotype of macrophages immediately raised the question of the biological significance of this phenomenon. 
At least the examples show that this phenomenon can be involved in a number of important physiological and 
pathophysiological processes.
The aim of the work was to test the hypothesis that contact between macrophages can affect the phenotype of 
macrophages.
Methods. In the work, we used mouse macrophages isolated from peritoneal lavage. A suspension of macrophages 
in RPMI-1640 medium with 100 U/ml penicillin and 100 µg/ml streptomycin was placed in flat-bottomed wells of 
48-well plates in three density options: 1) standard 0.5 million cells in 0.5 ml of medium, 2) with a lower density of 
0.25 million cells in 0.25 ml of medium and 3) with a higher density of 1.0 million cells in 1.0 ml of medium, so that 
the ratio of macrophages to the volume of the medium did not change, and the density of planting at the bottom 
of the well varied. After 36 hours, using a light microscope, the phenotype of macrophages in clusters and isolated 
macrophages was analyzed in wells.
Results. 1) The combination of macrophages into clusters contributes to the formation of a structural M1 
phenotype, and isolated settlement of macrophages - M2 phenotype. 2) A decrease in the density of macrophage 
settlement contributes to the formation of the M2 phenotype, and an increase - M1
Conclusion. Continuing to study the mechanisms of contact modulation of the macrophage phenotype could open 
a new direction in the study of innate immunity: signaling relationships between migration and adhesion molecules, 
the structure of the cytoskeleton and intracellular proinflammatory mechanisms of macrophages. In addition, the 
phenomenon of contact control of the macrophage phenotype will probably allow a better understanding of the 
immune pathogenetic mechanisms of pathology development. Finally, in the future, the mechanisms of contact 
modulation of the immune macrophage phenotype may become an excellent therapeutic target for the correction 
of impaired immune response in various pathologies.
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Введение

Изучение механизмов воспаления является одной 
из фундаментальных задач медицины. Важную роль в ре-
гуляции воспаления играют иммунные клетки – макрофаги. 

При встрече данных клеток с вирусами и бактерия-
ми или при действии IFN-γ у макрофагов формируется 
провоспалительный M1 фенотип. В этом случае макро-
фаги продуцируют оксид азота (NO), активные формы 
кислорода (АФК), провоспалительные цитокины, такие 
как интерлейкин-12 (IL-12), фактор некроза опухолей-α 
(TNF-α) и интерферон-γ (IFN-γ). Эти цитокины усилива-
ют бактерицидные свойства макрофагов. Маркерами М1 

фенотипа являются: округлая форма макрофагов, выра-
ботка больших количеств NO, провоспалительных цито-
кинов и АФК. 

При встрече макрофагов с грибами или гельминтами, 
или при действии IL-4 и IL-13 у них формируется антивос-
палительный M2 фенотип. В этом случае макрофаги се-
кретируют антивоспалительные цитокины, такие как IL-
10, IL-13 и трансформирующий фактор роста-β (TGF-β). 
Эти цитокины снижают продукцию провоспалительных 
цитокинов, АФК и NO, и поэтому, снижают бактерицид-
ные свойства макрофагов. Маркерами М2 фенотипа явля-
ются расплющенная форма макрофагов, большая продук-
ция антивоспалительных цитокинов и меньшая, по сравне-
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нию с М1, продукция NO, провоспалительных цитокинов 
и АФК [1]. 

В ходе иммунного ответа макрофаги могут менять 
свой фенотип, например, на первых этапах развития вос-
паления они могут иметь провоспалительный M1 фено-
тип, а в конце – антивоспалительный M2. Процесс смены 
фенотипа клетки получил название – «репрограммирова-
ние» или «поляризация» [1].

При той или иной патологии адекватное программиро-
вание макрофагов может обеспечить выздоровление, а неа-
декватное – напротив, прогрессирование болезни. Поэтому 
возник колоссальный интерес к факторам, которые влияют 
на фенотип макрофагов. Показано, что роль таких факторов 
могут играть компоненты и условия микроокружения, напри-
мер цитокины [2], рО2 или рН [3, 4]. Из этих данных следова-
ло, казалось бы, правильное предположение – в одной и той 
же среде все макрофаги будут иметь одинаковый фенотип. 

Однако каждый раз, наблюдая за макрофагами в одной 
и той же лунке, в одной и той же среде, мы обнаруживали 
фенотипически гетерогенную популяцию макрофагов: од-
ни макрофаги имели округлую форму М1 фенотипа, тогда 
как другие – расплющенную М2 фенотипа (рис. 1). 

Мы также обратили внимание на то, что изолированно-
сидящие макрофаги как правило имели М2 фенотип, тог-
да как сгруппированные в кластеры макрофаги, контакти-
рующие друг с другом – М1 фенотип. Это навело нас на 
мысль, что контактирование макрофагов друг с другом мо-
жет влиять на их фенотип. 

Цель работы состояла в проверке данной гипотезы. 
Для этого мы: 1) количественно оценили, какой фенотип 
имеют изолированносидящие макрофаги, а какой – сгруп-
пированные в кластеры; 2) оценили влияние разной плотно-
сти посадки макрофагов на пластик с заведомо разным коли-
чеством межклеточных контактов на фенотип макрофагов.

Материалы и методы исследования

В эксперименте использовали восемь 2-месячных сам-
цов мышей линий Balb/c. Все процедуры по уходу за живот-

ными и экспериментальные процедуры проводились в соот-
ветствии с «Европейской конвенцией о защите позвоночных 
животных, используемых для экспериментальных и иных на-
учных целей» (Совет Европы № 123, Страсбург, 1985) и одо-
брены комитетом по уходу и использованию животных 
Российского университета медицины. Мыши были предо-
ставлены питомником «Андреевка» (Москва, Россия). Жи-
вотных акклиматизировали к лабораторным условиям в те-
чение 7 дней. Животных содержали по 4 особи в клетке. Жи-
вотные получали сертифицированный рацион для грызунов 
«Полнорационный смешанный корм для крыс и мышей» ad 
libitum в виде муки. Вода предоставлялась ad libitum. Кон-
троль микроклимата в помещении для животных был уста-
новлен для поддержания температуры от 20 до 26°C, отно-
сительной влажности от 30 до 70%, не менее 10 смен воз-
духа в час и 12-часового цикла свет/темнота.

Мышей наркотизировали хлоралгидратом (32,5 нг/100 г,  
в/б) и из перитонеального смыва выделяли макрофаги. 
Взвесь макрофагов в среде RPMI-1640 с 100 U/мл пени-
циллина и 100 µг/мл стрептомицина размещали в плоско-
донные лунки 48-и луночных планшетов в трёх вариантах 
плотности: 1) стандартно по 0,5 млн клеток в 0,5 мл сре-
ды; 2) с меньшей плотностью – по 0,25 млн клеток в 0,25 
мл среды; 3) с большей плотностью – по 1,0 млн клеток 
в 1,0 мл среды, так что соотношение макрофагов к объё-
му среды не менялось, а плотность посадки на дне лунки 
различалась.

Далее, через 36 часов, в лунках со стандартной плотно-
стью посадки анализировали, какой фенотип имеют макро-
фаги в кластерах, и какой – изолированно сидящие макро-
фаги. Для этого, с помощью светового микроскопа (×40) 
в трёх лунках оценивали по 100 изолированно сидящих 
макрофагов и по 100 макрофагов, сидящих в кластерах. 
И в том и другом случае определяли соотношение окру-
глых (М1 фенотип) и расплющенных (М2 фенотип) макро-
фагов. За кластер принимали скопление из более чем трёх 
агрегированных макрофагов.

В следующей серии экспериментов провели сравне-
ние того, какой фенотип преимущественно формирует-

Рис. 1. Одиночное расположение расплющенных макрофагов (М2) и кластерное расположение округлых макрофагов (М1)  
на дне плоской культуральной лунки
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ся: в популяциях макрофагов со стандартной плотностью 
посадки на пластике; в популяции со сниженной плотно-
стью, с заведомо сниженным количеством межклеточных 
контактов; и в популяции с увеличенной плотностью, 
с увеличенным количеством межклеточных контактов. 
Для этого мы, во-первых, сравнили количество круглых 
(морфологический маркер М1 фенотипа) и расплющен-
ных (морфологический маркер М2 фенотипа) макрофа-
гов среди 100 клеток, и, во-вторых, сравнили ЛПС-ин-
дуцированную продукцию NO (функциональный маркер 
фенотипа) в лунках с разной плотностью посадки. Про-
дукцию NO оценивали по содержанию нитритов в куль-
туральной среде с помощью реактива Грисса [5] и из-
мерения оптической плотности при 540 нм на микро-
планшетном ридере (BioRad, США). О приобретении 
макрофагами М1 фенотипа свидетельствовало увеличе-
ние количества округлых макрофагов и высокая продук-
ция NO при стимуляции ЛПС, М2 фенотип характеризо-
вало снижение количества округлых макрофагов и низ-
кая продукция NO [1].

Подсчёт проводили в пяти полях зрения в каждой лун-
ке, и в не менее чем в трёх лунках одного эксперимента, 
в не менее чем трёх экспериментах. 

Результаты исследования

Объединение макрофагов в кластеры способствует 
формированию структурного М1 фенотипа, а изолиро-
ванное расселение макрофагов – М2 фенотипа. Мы коли-
чественно подтвердили наши предварительные наблюде-
ния. Во всех лунках, несмотря на то, что макрофаги были 
выделены от одного животного и находились в одной и той 
же среде (RPMI-1640, 10% ФБС, 36 часов), часть макрофа-
гов имела округлую форму, характерную для М1 феноти-
па, а часть – расплющенную, характерную для М2 фено-
типа. При этом округлые макрофаги находились в основ-
ном в кластерах, а расплющенные главным образом сидели 
изолированно (рис. 1 и 2). 

В кластерах округлые М1 макрофаги состави-
ли 91,3±8,5%, тогда как расплющенные – только 8,7±1,5%, 
среди изолированно сидящих макрофагов округлых М1 ма-
крофагов было 59,0±6,6%, а расплющенных – 41,0±3,6%. 

Таким образом, можно предположить, что межкле-
точные контакты, возникающие между макрофагами, об-
разующими кластеры, действительно могут играть роль 
в приобретении макрофагом М1 фенотипа, а потеря таких 
контактов при изолированном расселении способствует 
формированию М2 фенотипа. 

Снижение плотности расселения макрофагов способ-
ствует формированию М2 фенотипа, а увеличение – М1. 
Данные на рис. 2 показывают, что при снижении плотно-
сти посадки макрофагов с 500 тыс до 250 тыс. на одну лун-
ку количество округлых макрофагов снизилось с 64,9+5,1% 
до 49,1+5,2%. Также видно, что сдвиг структурного фено-
типа макрофагов в сторону М2 фенотипа, сопровождал-
ся снижением продукции NO (функционального марке-
ра М1 фенотипа) c 17,0+3,1 до 6,2+2,7 мкМ, то есть в 2,7 
раза. Напротив, увеличение плотности посадки макрофагов 
с 500 тыс. до 1000 тыс. приводило к увеличение круглых 
клеток с 64,9+5,1% до 82,9+5,7% и продукции NO почти 
в 1,4 раза c 17,0+3,1 мкМ до 23,7+3,4 мкМ.

Таким образом, снижение плотности посадки макро-
фагов и, соответственно, снижение вероятности образова-
ния межклеточных контактов, способствует формированию 
структурного и функционального М2 фенотипа. Напротив, 
увеличение плотности посадки макрофагов и, соответ-
ственно, увеличение вероятности образования межклеточ-
ных контактов, способствует формированию М1 фенотипа. 

Обсуждение

Продукция NO и форма клеток являются маркерами, 
соответственно, функционального и структурного феноти-
па макрофагов [6]. Поэтому их изменение может адекват-
но отражать формирование того или иного фенотипа. Это 
позволяет сформулировать главный вывод нашей рабо-

Рис. 2. Количество округлых макрофагов и продукция NO при разной плотности посадки макрофагов в лунках.
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ты – существует феномен контактного контроля фенотипа 
макрофагов. Полученные результаты и анализ литературы 
позволяют сформулировать также два важных положения, 
имеющих отношение к этому феномену. 

Положение 1. При переносе макрофагов из организма 
в условия in vitro («in-vitro стресс»), макрофаги отвечают 
транзиторным увеличением кластеров и кластерированных 
клеток. Это наводит на мысль о существовании сопряже-
ния между механизмами клеточного стресса и механизма-
ми миграции и образования межклеточных контактов. Об-
суждение этих механизмов выходит за рамки этой статьи 
и требует дополнительных экспериментов. Однако уже сей-
час понятно, что клеточный in vitro стресс вызывает реор-
ганизацию межклеточных контактов и изменение двига-
тельной активности и фенотипа макрофагов. 

Положение 2. Кластерирование макрофагов и, соот-
ветственно, увеличение межклеточных контактов способ-
ствует формированию М1 фенотипа, который характери-
зуется округлой формой и увеличенной продукцией NO. 
Известно, что «клетка-клеточные» взаимодействия опосре-
дуют рецепторы адгезии интегрины. Активация интегри-
нов, с одной стороны может приводить к активации сиг-
нальных внутриклеточных путей связанных с фосфатиди-
линозитол 3-киназой (phosphatidylinositol 3-kinase), c-Src, 
PYK2 и p130(cas), с другой – индуцировать реорганиза-
цию цитоскелета клетки [7]. Duong и соавт. [7] также пока-
зали, что блокирование интегринов приводит к угнетению 
функций остеокластов – резидентных макрофагов костной 
ткани. Пока мы не можем ответить на вопрос, почему кла-
стерированные макрофаги имеют круглую форму и про-
дуцируют больше NO, а изолированные – распластанную 
и продуцируют меньше NO. Однако нельзя исключить, что 
контактирование клеток возможно через активацию инте-
гринов, что индуцирует перестройку цитоскелета клетки, 
и эти события влияют на форму клеток и активность ин-
дуцибельной NO-синтазы (iNOS). 

Открытие контактного модулирования фенотипа макро-
фагов сразу поставило вопрос о биологической значимо-
сти этого феномена. По крайней мере, три примера пока-
зывают, что этот феномен может быть вовлечен в ряд важ-
ных физиологических и патофизиологических процессов.

Во-первых, известно, что при локальном воспалении 
макрофаги быстро мигрируют в фокус воспаления, и там 
их концентрация резко увеличивается. Это может способ-
ствовать формированию провоспалительного М1 феноти-
па, необходимого для уничтожения патогенных бактерий, 
вызвавших воспаление. После подавления инфекции про-
воспалительные макрофаги удаляются, и, соответственно, 
их концентрация уменьшается. Снижение концентрации 
макрофагов, как показали наши эксперименты, будет спо-
собствовать трансформации фенотипа в сторону антивос-
палительного М2 фенотипа и, таким образом, предупреж-
дать избыточное воспаление, а также будет способствовать 
репарации поврежденных тканей.

Во-вторых, известно, что в области инвазии и интрава-
зации опухолевой клетки скапливается много макрофагов. 
Более того, интравазация опухолевой клетки происходит 

в окружении макрофагов [8]. Не исключено, что и в этом 
случае скопление макрофагов способствует трансформа-
ции фенотипа макрофагов в сторону провоспалительно-
го М1 фенотипа. Этот фенотип опухолево-ассоциирован-
ных макрофагов характеризуется повышенной секрецией 
металлопротеиназ, которые деградируют экстраклеточный 
матрикс, нарушают целостность базальной мембраны и со-
судистой стенки, и таким образом, способствует инвазии 
и метастазированию. 

Во-третьих, анализ работ Bitterman и соавт. [9-11] пока-
зал, что при различных видах патологии лёгких происходит 
существенное изменение расселения альвеолярных макро-
фагов в бронхоальвеолярном дереве. Возможно, этот фак-
тор также вносит вклад в трансформацию фенотипа альве-
олярных макрофагов и в развитие патологии.

Заключение

В целом, продолжение исследований механизмов кон-
тактного модулирования фенотипа макрофагов могло 
бы открыть новое направление в изучении врожденного 
иммунитета – сигнальные взаимоотношения между моле-
кулами миграции и адгезии, структурой цитоскелета и вну-
триклеточными механизмами поддержания процесса вос-
паления. Кроме того, феномен контактного контроля фе-
нотипа макрофагов, вероятно, позволит лучше понимать 
иммунные патогенетические механизмы развития патоло-
гий. И наконец, в перспективе, механизмы контактного мо-
дулирования фенотипа иммунных макрофагов могут стать 
терапевтической мишенью для коррекции нарушенного им-
мунного ответа при разных патологиях. 
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